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Phase space localization and matrix element distributions in systems
with mixed classical phase space
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We consider distributions of diagonal matrix elements for smooth observables in systems whose classical
phase space has a mixture of chaotic and nearly integrable regions. The quantum distributions agree very well
with distributions obtained from classical trajectory segments whose length is the Heisenberg time. Non-
Gaussian wings in the distributions can be linked to classical trapping in certain parts of phase space, some-
times connected to islands, but also to regions separated by other barriers to transport. Thus classical deviations
from ergodicity are quantitatively reflected in quantum matrix elements. The relation to scars is discussed.
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PACS numbeps): 05.45—-a, 03.65+Sq

I. INTRODUCTION able in question. The variance was studiedi6] where it
was shown that it decays Jsg.]l, whereTy=27wA/A(E) is
High-lying quantum states in many systems such as athe Heisenberg timgA (E) is the mean level spacing at en-
oms, molecules, nuclei, and mesoscopic solids show fluctuargy E]. This implies that fluctuations of expectation values
tions in energy-level spacings and matrix elements whicltan be modeled by the fluctuation properties of classical av-
can very accurately be modeled by statistical ensemblegrages along trajectory segments of length. It is intu-
These fluctuations are universal in that they can be describegvely appealing that this is roughly the time beyond which
by random-matrix theory1-4]. A connection to classical classical and quantum time evolutions depart. By way of two
chaos can be established in the case of rapidly decaying COé'Xamp|es, the quantized baker's map and hydrogen ina mag-
relations and classical ergodicif$p—7]. However, in most netic field, it was shown that not only the mean and the
systems, including the stadium billiaf8l], dynamic correla-  yariance but also the full quantum distributions of expecta-
tions may persist for long times and the rate of explorationjon values were very well modeled by the corresponding

for some regions in phase space is very slow. Such inhomasj5gsical distribution functiongsee[17,18 for further ex-
geneities in classical phase space can be due to adiabal ﬁwples

separation of time scalég—llj, cgntgn[lz] or other barri- The fluctuation properties of expectation values in sys-
€rs to transport. There are |nd|cqt|ons that.some quantum, s where the classical dynamics is dominated by phase-
effects can be related to this classical behavior. We mention . - : .
diffusion through cantori13], random matrix models for space lnhomogeneltles can b_e very different and nonuniver-
coupled region$14], or the close relationship between clas- Salf as we show in the following. It 'S then natur_al to ask to
sical diffusion and quantum localization noted[i5]. which extent fluctuatlo_ns of expectation values_ in such sys-
In the present article we study fluctuations of expectationtems can be characterized in terms of the classical dynamics.

values of operators with a smooth classical limit. It is as-1hat this should be possible is suggested by the following
sumed that the operatérdoes not commute with the Hamil- qualitative argument: Phasg-spgce regions characterlzeq by
P smaller than average classical instability may trap classical

ton operatoH. Such fluctuations are of considerable interesttrajectories. At the same time, such regions give rise to
since they are directly related to Franck-Condon factors andvave-function localization. Such localized wave functions
other experimentally accessible quantities. As showji@),  might give matrix elements far from the ergodic mean and
for hyperbolic systems they can also be related to classicahight be noticeable in the distribution. As it turns out, this
fluctuations. One can thus expect that inhomogeneities gsicture gives a remarkably accurate description of the distri-
correlations in the classical dynamics should also be repution.

flected in these fluctuations. It is precisely these effects we A quantitative theoretical characterization of fluctuations
would like to identify and demonstrate here. of expectation values in systems with mixed classical dy-

In classically hyperbolic quantum systems, fluctuations ofamics is still missing as the analysis [d6] does not im-

expectation values are universal: they are Gaussian as preérediately apply there. The assumptions about the distribu-
dicted by random-matrix theory19]. The corresponding tion of classical trajectory segments, for example, fail badly
mean w giag and variancezrﬁiag are nonuniversal parameters in the integrable islands. However, we here present qualita-
and depend on the observable considered. Both can be esfive arguments and numerical examples to support the fol-
mated semiclassically. For the mean value a semiclassict#wing observations which are natural extrapolations of the
estimate is given by the phase-space average of the obsemork on hyperbolic systems. First, the presence of integrable
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islands substantially alters the distribution of expectation val- 102
ues: it retains a finite width even as the Heisenberg time
diverges. Second, matrix element distributions in systems 10
with mixed phase space can to a good approximation be
described as a superposition of the two distributions, one for
the integrable part and one for the hyperbolic part. Third, the %
inhomogeneities in systems with mixed phase space, in par- 10 1 I K L
ticular due to the infinite hierarchy of islands around islands D2s 05 07 108 L2 1A
or due to cantori affect the distributions of classical trajec-
tory segments and are also reflected in the distribution of 10
guantum expectation values. This suggests that individual
wave functions also show a larger than average amplitude in
these regions, an effect reminiscent of scarfi2@,21]. 107
Our numerical support is based on two quite different
systems exhibiting a mixed phase space. The first one, stud- 10,5
ied in Sec. Il, is a planar billiard system whose boundary is
given byr=1+acosp (in polar coordinates and ¢) [22].
As a second example we consider in Sec. Ill the hydrogen
atom in a strong magnetic fie[@3]. In both cases we find
close similarities between classical and quantum behaviors in
regions of mixed phase space. Moreover, we observe strong
deviations from Gaussian distributions, in marked difference
to what might be expected from random-matrix theory.
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II. ANONHYPERBOLIC BILLIARD

We begin by discussing our results for the family of bil-  FIG. 1. (8 The distribution of matrix elements for the billiard
liards. Fora=0, the billiard is a circular disk with integrable with deformation parameter=0 (full line). The dashed line shows
classical dynamics. Fa=1, on the other hand, the bound- _the correspondlng.classmal distribution funct[(_mze Eq(1)]. The '
ary has a cusp and the billiard is the fully hyperbolic cardioid!nset shows the histogram of the nearest-neighbor level spacings.
billiard [22]. The quantum eigenvalues, and the eigen- The Poisson distribution is shown as a dashed lipeSame but for
functions,(x,y) are determined from the Helmholtz equa- aio.TS. The dashed line shows the distribution function of
tion [A—zﬁ] #(X,y) =0 with Dirichlet boundary conditions, Ty fOHt_:itA(pt Q). (©) .Wave function exhibiting the localization
and hz,=+2mE,. We have calculated matrix elements properties discussed in the text.

(nlAl ) of the observableA(p,q)=|d, wherep andq  the trajectory. The right-hand side of Eq2) is independent
= (x,y) are phase-space coordinates. The corresponding digf T and thus the quantum variance does not narrovi as

tribution functions are shown in Fig.(d) for the integrable —0, as opposed to the hyperbolic case, where in systems
casea=0 and in Fig. 1b) for an example with mixed phase ;itn two degrees of freedomﬁiag~Tg1~ﬁ.

spacea=1/2. For the distribution function of the observablg(p,q)

=|qg|? in the circle we obtain
A. Integrable case

In the integrable cas@=0, the Wigner functions of the P(A)=3/m[(1-A)/(A-1/3)]*2
eigenstategn) are uniformly distributed over the corre-
sponding quantizing torl =(n+1)%. The matrix elements This resultis also shown in Fig(d) and compares very well
can be approximated, to ordex(%2), by the averages of the with the distribution of matrix elements. Note that while the
phase-space observable over the quantizing toriAq(l) nearest-neighbor level separation shows universal behavior
=(2m) L/ d26A(l,6). Here (,6) are action and angle vari- [inset of Fig. 1a)], the distribution functiorP(A) does not.
ables. This allows us to obtain a semiclassical expression fopince elliptic islands in systems with mixed phase space can

the distribution function of diagonal matrix elements, be described by approximate action and angle variables, their
contribution to the matrix element distribution can be calcu-

lated from Eq.(1) and will be nonuniversalsee below.
P(A)= [ duotA- A, &
2 . . ) B. Mixed case
where du(1)=A(E)d“15[E—H(l)] is the invariant mea-
sure on the tori. For the variance one obtains For a=1/2 the classical motion is largely ergodi24].
However, there are elliptic islands on tiny scales and they
influence the classical dynamics and the correlations. As they
. 2 are too small to support quantum states for the value of
Planck’s constant we consider, they do not influence some
Ao(1) may be obtained as a trajectory averag@gf, #) over  measures of quantum chaos. For instance, the distribution of
the torus for sufficiently largd (whereT is the time along nearest-neighbor level spacings is in good agreement with

2

T~ | dw)IAo(I)F—U A Ao(1)
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the Wigner surmis@(A) = w/2Aexp(—wA?%/4), as shown in [(a) ]
the inset of Fig. b). However, the rate of exploration of

phase space is highly nonuniform and this effects the distri-
bution function of classical averaggglfgpth(pt,qt) of

the observable along periodic orbits or classical trajectory
segments of lengtff,. In Ref.[16] it was argued that the
distribution of quantum-mechanical matrix elements reflects
the classical distribution function witl,=T,. Figure 1b) 0
shows that this is indeed the case. Both distributions exhibit
a characteristic shoulder due to the presence of several fami-
lies of whispering gallery orbits which strongly influence the 0.5 ¢
phase flow. They are all unstable but their Lyapunov expo- 0.4
nents increase only logarithmically with the numberof
bounces at the perimetex,,~a+blnn. These families cre-
ate comparatively stable regions of phase space where trajec- “0 , 0.04

tories tend to be trapped, thus contributing to the tails of the 1/,

classical distribution function. The quantum distribution ~

functions reflect this classical localization. In particular, ~FIG. 2. (@ The distribution of matrix element,, (solid line),
wave functions corresponding to matrix elements in thehe corresponding classical distribution forr/2\ (z) =350 (dashed

shoulder of the distribution are localized in the vicinity of the 'In€). and the result according to E(L) (heavy ling. The inset
boundary[compare Fig. ()]. shows a magpnification of the regular contributioft®. Scaled ma-

trix eIements~Ann= 22| 112 | 4) versus quantum eigenvalugs.
(c) Regular matrix elements and the semiclassical thédaghed
lines). In all cases, scaled units are used.

-

P(A,)

\'QO N A~ & O

lll. THE HYDROGEN ATOM

IN A STRONG MAGNETIC FIELD
The second example is the hydrogen atom in a strong A. Regular matrix elements

magnetic field. As usual, we exploit the scaling relations in  The chains of eigenvalues in Fig(®? are associated with
the system and the mapping onto an anharmonic oscillator ithe elliptic island. The matrix elements can be calculated
semiparabolic coordinat¢23]. The Hamilton function then  semjclassically by identifying approximate action and angle
becomes in atomic units variables for the island. Following the method outlined in
Ref. [14], we have determined scaled action variables

2, .2 2 (Tl,Tz). Specifically, we introduce a local coordinate system
_Pute 4

> E(u?+v?)+ g(,U«ZV‘”' w*v¥)=2, (3)  near the stable PO and define the acligrtorresponding to
radial motion in the plane perpendicular to the magnetic

H

field.T1 is chosen corresponding to vibrational motion par-

wherey is the strength of the magnetic field. Rewriting Eq. alle| to the field. For motion along the P@,;=0 and1,

: o= 13 ~_ B ~ ~ ~ _ _
(3) in terms of scaled coordinatgs=y~u and v=y™"v it =S,. In general, (;,l,) are determined numerically. To

can be shown that the classical Hamiltonian depends only on i ~ ~
a combination of energy and field, namels=Ey~22 To th|s~end, we~con5|der the Legendre transfodifw)=1,

facilitate the comparison with classical mechanics, weefix +al;, whereJ denotes the mean action accumulated be-
and solve the Schdinger equation for=y~ % The classi- tween two subsequent intersections with the surface-of-

cal action scales linearly witlz, S=fpdg=zS In scaled section (SO and « denotes the winding number of the
units the Heisenberg time isi A (z). torus. Again, motion along the PO hds=S,. For rational
At the scaled energy of= — 0.2 the classical dynamics is @=r/s (r, s intege), an orbit closes upon itself afterin-
dominated by a large island in phase space. The islantersections of the SOS amdturns around the central fixed
around the stable periodic orbiPO) perpendicular to the point. Using 50 approximately periodic trajectories (

magnetic field occupies about 10% of phase space. In Fig=10000) covering the elliptic island, we obtal{a) as

2(b) we show matrix elements of both positive and negatlveshown in the inset of Fig. @). Both branches oﬁ(a) are

z parity for the scaled observable=1/2r=z%/2r. One can fitted using splinesfull line). This allows for an accurate
clearly distinguish two types of matrix elementsgular and alculation Oﬂ1=dj/da andezg(Tl) :3_a~|1 shown in

irregular ones. The irregular matrix elements are scattere ig. 3a) as a full line. The dashed curve shows the result for

around the classical phase-space average of the ergodic copn: . L X .
. : armonic approximation of the motion perpendicular to the
ponent, while the regular matrix elements are arranged on ~ ~

strings. This arrangement is shown in detail in Figg)2as a  Stable POJ,=S,—a,l . Both curves lie close to each other,
function of Zﬁl- Finally, in Fig. 2a) the corresponding dis- which _explams the success of the quantization scheme by
tribution function is shown. The contributions from regular Gutzwiller and Miller[26,27).

and irregular matrix elements are again clearly distinct and The relationl ,=g(l,) can be checked quantum mechani-
we discuss them separately. cally by assigning quantum numbers- (n,,n,) to the regu-
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2.07 207 The matrix elements and their semiclassical approxima-
Lo LT tions are shown in Fig. (). We observe very good agree-
l, < I, = B N . -~ . .
2,04 2.04 - N ment. The matrix elements tend g linearly in 1z2~#%
igz zg; i \\ with the gradient given approximately by, +1/2. In fact,
201 201 |- ®) for high energies or small; we find Ay(T;)=Apo— I for
2 o2 2o o 0.2 A=1/2r. Together with|,=(n;+1/2)/z, we obtain A,

=Apo—(n1+1/2)/z, as observed.

It should be noted that Gutzwiller’'s theory merely pre-
dicts thatA, approacheépoash goes to zero. The approach
to the limit, as shown and described in Figc)2 cannot be
obtained using Gutzwiller's formula.

Having calculated the regular matrix elements, their dis-

B tribution function is obtained as follows. To very good accu-
0 0.1

Tt /2)/2, racy,TZEg(T1)=5p+ apTl Whereﬁép _and ap are the sca!ed
action and winding number associated with the PO in the
FIG. 3. The relationl ,=g(I,) between the actionsl{,1,),  center of the island. This enables us to evaluate the distribu-

belonging to the regular island, as obtained from class@aénd  tion function of regular matrix elements asP(Z\)
qguantum(b) calculations. The dashed line corresponds to the har- N[(?A (I)/al 1- 1 The normalizationN is determined
= 0 -

monic approxmanonlz—sp “pll The inset of(a) shows the  from the fraction of regular phase-space volume. This distri-
Legendre transformJ(a)=1,+al, of the classical curvel,  bution function is shown in Fig. (@) [see also inset of Fig.
=g(1,). (c) The average of the classical phase space observabi(@a)] and agrees well with the quantum-mechanical data ex-
A=2z%2r over a given torus as a function of its actiop (d) The ~ €ept in the vicinity of the border of the island.

quantum analog shows the exact matrix eleméyptas a function

of the action of the quantizing tori. The dashed line shows the fit B. Irregular matrix elements

Ao(1)=Apo~11. In all cases, scaled units are used. The procedure described in the preceeding section allows
us to identify and remove the regular matrix elements. What

lar levels associated with the elliptic island. This is mostremains is the bulk contribution centered around the micro-
easily done by inspection of the respective matrix elementganonical averagéA),.=0.349. This is shown in Fig.(a),
Rn which fall along lines with fixed quantum numbey [cf. ~ where we have also plotted the distribution of the averages
Fig. 2c) with n;=0,12... from top to bottor}. In order to  of A along classical trajectory segments of lengf] of the
determinen,, it is sufficient to count the excitations along Heisenberg time 2/A(z). As in the case of the billiard, the
the PO for one wave function belonging to a particular subquantum distribution reflects classical localization in phase
groupn, = const[28]. space in the same way as the classical distribution does. This

Making use of the scaling properties, the Einstein-is particularly noticeable in the tails of the distributions
Brillouin-Keller (EBK) quantization conditions may be re- which show significant deviations from a Gaussian shape.
written ast(n+I)/zn, where (»,1,)=(3/2,1/2) denote the In order to connect matrix elements and classical phase
Maslov indices of motion parallel and perpendicular to theSpace structures more quantitatively we project out the states
PO andz, are the exact quantum eigenvalues to which thednd the trajectories that contribute to certain parts of the
quantum numbers have been assigreé]. Figure 3b) quantum and classical distributions, respectively. This is of
shows the quantized values fdi(l ;) obtained in this way. Particular interest in the tails of the distribution, where de-
They agree very well with the classical curve. The continu-viations from Gaussian behavior are strongest. Figure 4 con-
ation of the quantum curve beyond the classical border inditains a sequence of Poinc&8@S plots. The left panel shows
cates the presence of classical partial barriers such as chaifi® SOS crossings of all classical trajectory segments that
of tiny regular islands near the regular-chaotic surfde, a  contribute to a specific interval in the observable and the
point which will be further investigated in connection with fight panel shows typical Husimi distributions of the corre-
the irregular matrix elements below. sponding quantum states. o

By averaging the observable over the guantizing tori, The first row in Fig. 4 shows the contributions to the
we obtain semiclassical approximations for individual matrixinterval 0. 45<A<0.5, in the middle between the island and
elements between states associated with the elliptic islanthe chaotic sea. Evidently, all the classical trajectory seg-

The resulting functioﬁ\o(f) is shown in Fig. &) as a func- Ments stay close to the vicinity of the island and also the
tion of T.. We haveA (T)—ﬁ asT-—0 A quantum guantum wave functions are localized nearby. Thus the stick-
1- 0 PO 1 .

equivalent of Fig. &) is constructed by plotting the exact ing of the classical trajectories near the islands manifests
q 9. y ploting itself in the distribution of average observables and in the

matrix elements as a function d)i (ny+ 1/2)/2n n, [Fig. quantum wave functions.

3(d)]. Again, the agreement between the quantum and clas- If we collect all trajectories with 02A<0.25 (A =0.2
sical curves is very good. For states with small longitudinalfor the PO parallel to the magnetic figldheir mtersectlons
guantum numben,, however, the deviation between exact with the SOS appear near the fixed points of the adiabatically
and semiclassical matrix elements is clearly visible. stable PO parallel to the magnetic field and the other PO

0.66 0.66
0.64 0.64
_0.82 0.62
A(y) 0.6 A 0.6
0.58 0.58
0.56 0.56
0.54 0.54
0.52 0.52
0.5 0.5
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bined with a direction of motion with weak instability. Since
the comparison between classical and quantum mechanics is
based on finite time segments, long time trapping in one
region implies that there is less time to explore others and
hence a certain lack of ergodicity. For infinite times this
deficit will disappear, but for finite times the deviations re-
main noticeable, and, as Heller has argued, also persist quan-
tum mechanicallyf31].

IV. CONCLUSIONS

In summary, we have established a close quantum-
classical correspondence for distributions of diagonal matrix
elements in quantum systems with mixed classical phase
space. We have related quantum and classical localization
properties and have thus shown how deviations from
random-matrix theory in such systems can be understood
qualitatively and, to a certain extent, also quantitatively.
There remains then the question of the relation between our
results and the phenomenon of scars. According2tg a
wave function shows a scar in some region if the quantum
probability | |2 is enhanced over the average expected from
a uniform microcanonical distribution, perhaps due to a
FIG. 4. Plot of the intersection points of classical trajectoriesquantum interference effect, similar to weak localization. In

(accumulated scaled acti@w200) with the SOSleft pane) and the present case, however, the enhancement is purely classi-
Husimi distributions of selected eigenstateight pane). The tra-  cal in origin, due to an increased classical trapping time in
jectories and eigenstates are chosen such that their mean values 4h@ localization region(as suggested previously ifi0]).
matrix elements lie in between certain intervals, namely (0.45,0.5Clearly, this phenomenon shows up for finite time segments
(first row), (0.2,0.25)(second roy; and (0.33,0.37)third row). only and vanishes in the classical limivhere Ty—®), a
For the coordinates on the SOS $g8|. feature it shares with scars in general. Since typical systems
have a nonuniform phase space the phenomenon discussed
winding around it, as well as near the invariant manifolds ofhere should be rather widespread and a major source of de-
the corresponding fixed points. We also show the Husimiiations from random-matrix behavior in matrix elements.
distribution of a corresponding eigenstate, which showsHowever, such an enhancement should be clearly distin-
similar localization near the adiabatically stable periodic or-guished from scarring due to quantum effects like weak lo-
bit (Fig. 4, second roy ~ calization. In fact, it is not clear whether scarring without

The third row in Fig. 4 shows the situation for 083  corresponding classical enhancement exists. It would be
=<0.37, i.e,, in the vicinity of the microcanonical mean. highly desirable to have a clear-cut example demonstrating
Clearly, the maximum of the irregular distributi@his asso- this latter type of scarring as opposed to the phenomenon
ciated with the body of the chaotic phase space, where thdiscussed in the present letter.
less unstable subregions are left out.

Of these findings the ones for the adiabatically stable pe-
riodic orbit are particularly interesting since they are not con-
nected to a stable island where the long-time organization K.M. gratefully acknowledges support of the SFB 393.
due to self-similar structures in phase space is at least qualB.E. and B.M. would like to thank the Newton Institute,
tatively understood. The effect of the adiabatically stable orCambridge, for its hospitality during the completion of this
bit is to introduce a new time scale in the dynamics com-work.
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