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Phase space localization and matrix element distributions in systems
with mixed classical phase space
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We consider distributions of diagonal matrix elements for smooth observables in systems whose classical
phase space has a mixture of chaotic and nearly integrable regions. The quantum distributions agree very well
with distributions obtained from classical trajectory segments whose length is the Heisenberg time. Non-
Gaussian wings in the distributions can be linked to classical trapping in certain parts of phase space, some-
times connected to islands, but also to regions separated by other barriers to transport. Thus classical deviations
from ergodicity are quantitatively reflected in quantum matrix elements. The relation to scars is discussed.
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I. INTRODUCTION

High-lying quantum states in many systems such as
oms, molecules, nuclei, and mesoscopic solids show fluc
tions in energy-level spacings and matrix elements wh
can very accurately be modeled by statistical ensemb
These fluctuations are universal in that they can be descr
by random-matrix theory@1–4#. A connection to classica
chaos can be established in the case of rapidly decaying
relations and classical ergodicity@5–7#. However, in most
systems, including the stadium billiard@8#, dynamic correla-
tions may persist for long times and the rate of explorat
for some regions in phase space is very slow. Such inho
geneities in classical phase space can be due to adia
separation of time scales@9–11#, cantori@12# or other barri-
ers to transport. There are indications that some quan
effects can be related to this classical behavior. We men
diffusion through cantori@13#, random matrix models for
coupled regions@14#, or the close relationship between cla
sical diffusion and quantum localization noted in@15#.

In the present article we study fluctuations of expectat
values of operators with a smooth classical limit. It is a

sumed that the operatorÂ does not commute with the Hami

ton operatorĤ. Such fluctuations are of considerable inter
since they are directly related to Franck-Condon factors
other experimentally accessible quantities. As shown in@16#,
for hyperbolic systems they can also be related to class
fluctuations. One can thus expect that inhomogeneities
correlations in the classical dynamics should also be
flected in these fluctuations. It is precisely these effects
would like to identify and demonstrate here.

In classically hyperbolic quantum systems, fluctuations
expectation values are universal: they are Gaussian as
dicted by random-matrix theory@19#. The corresponding
meanmdiag and variancesdiag

2 are nonuniversal paramete
and depend on the observable considered. Both can be
mated semiclassically. For the mean value a semiclass
estimate is given by the phase-space average of the ob
PRE 591063-651X/99/59~5!/5272~6!/$15.00
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able in question. The variance was studied in@16# where it
was shown that it decays asTH

21 , whereTH52p\/D(E) is
the Heisenberg time@D(E) is the mean level spacing at en
ergy E#. This implies that fluctuations of expectation valu
can be modeled by the fluctuation properties of classical
erages along trajectory segments of lengthTH . It is intu-
itively appealing that this is roughly the time beyond whi
classical and quantum time evolutions depart. By way of t
examples, the quantized baker’s map and hydrogen in a m
netic field, it was shown that not only the mean and t
variance but also the full quantum distributions of expec
tion values were very well modeled by the correspond
classical distribution functions~see @17,18# for further ex-
amples!.

The fluctuation properties of expectation values in s
tems where the classical dynamics is dominated by ph
space inhomogeneities can be very different and nonuni
sal, as we show in the following. It is then natural to ask
which extent fluctuations of expectation values in such s
tems can be characterized in terms of the classical dynam
That this should be possible is suggested by the follow
qualitative argument: Phase-space regions characterize
smaller than average classical instability may trap class
trajectories. At the same time, such regions give rise
wave-function localization. Such localized wave functio
might give matrix elements far from the ergodic mean a
might be noticeable in the distribution. As it turns out, th
picture gives a remarkably accurate description of the dis
bution.

A quantitative theoretical characterization of fluctuatio
of expectation values in systems with mixed classical
namics is still missing as the analysis of@16# does not im-
mediately apply there. The assumptions about the distr
tion of classical trajectory segments, for example, fail ba
in the integrable islands. However, we here present qua
tive arguments and numerical examples to support the
lowing observations which are natural extrapolations of
work on hyperbolic systems. First, the presence of integra
5272 ©1999 The American Physical Society
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PRE 59 5273PHASE SPACE LOCALIZATION AND MATRIX ELEMENT . . .
islands substantially alters the distribution of expectation v
ues: it retains a finite width even as the Heisenberg t
diverges. Second, matrix element distributions in syste
with mixed phase space can to a good approximation
described as a superposition of the two distributions, one
the integrable part and one for the hyperbolic part. Third,
inhomogeneities in systems with mixed phase space, in
ticular due to the infinite hierarchy of islands around islan
or due to cantori affect the distributions of classical traje
tory segments and are also reflected in the distribution
quantum expectation values. This suggests that individ
wave functions also show a larger than average amplitud
these regions, an effect reminiscent of scarring@20,21#.

Our numerical support is based on two quite differe
systems exhibiting a mixed phase space. The first one, s
ied in Sec. II, is a planar billiard system whose boundary
given by r 511acosf ~in polar coordinatesr andf) @22#.
As a second example we consider in Sec. III the hydro
atom in a strong magnetic field@23#. In both cases we find
close similarities between classical and quantum behavio
regions of mixed phase space. Moreover, we observe st
deviations from Gaussian distributions, in marked differen
to what might be expected from random-matrix theory.

II. A NONHYPERBOLIC BILLIARD

We begin by discussing our results for the family of b
liards. Fora50, the billiard is a circular disk with integrabl
classical dynamics. Fora51, on the other hand, the bound
ary has a cusp and the billiard is the fully hyperbolic cardio
billiard @22#. The quantum eigenvaluesEn and the eigen-
functionscn(x,y) are determined from the Helmholtz equ
tion @D2zn

2#cn(x,y)50 with Dirichlet boundary conditions
and \zn5A2mEn. We have calculated matrix elemen

^cnuÂucn& of the observableA(p,q)5uqu2, wherep and q
5(x,y) are phase-space coordinates. The corresponding
tribution functions are shown in Fig. 1~a! for the integrable
casea50 and in Fig. 1~b! for an example with mixed phas
space,a51/2.

A. Integrable case

In the integrable case,a50, the Wigner functions of the
eigenstatesun& are uniformly distributed over the corre
sponding quantizing toriI5(n1 l)\. The matrix elements
can be approximated, to orderO(\2), by the averages of the
phase-space observableA over the quantizing tori,A0(I )
5(2p)21*d2uA(I ,u). Here (I ,u) are action and angle vari
ables. This allows us to obtain a semiclassical expression
the distribution function of diagonal matrix elements,

P~A!5E dm~ I !d@A2A0~ I !#, ~1!

where dm(I )5D(E)d2Id@E2H(I )# is the invariant mea-
sure on the tori. For the variance one obtains

sdiag
2 5E dm~ I !uA0~ I !u22U E dm~ I !A0~ I !U2

. ~2!

A0(I ) may be obtained as a trajectory average ofA(I ,u) over
the torus for sufficiently largeT ~whereT is the time along
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the trajectory!. The right-hand side of Eq.~2! is independent
of T and thus the quantum variance does not narrow a\
→0, as opposed to the hyperbolic case, where in syst
with two degrees of freedomsdiag

2 ;TH
21;\.

For the distribution function of the observableA(p,q)
5uqu2 in the circle we obtain

P~A!53/p@~12A!/~A21/3!#1/2.

This result is also shown in Fig. 1~a! and compares very wel
with the distribution of matrix elements. Note that while th
nearest-neighbor level separation shows universal beha
@inset of Fig. 1~a!#, the distribution functionP(A) does not.
Since elliptic islands in systems with mixed phase space
be described by approximate action and angle variables, t
contribution to the matrix element distribution can be calc
lated from Eq.~1! and will be nonuniversal~see below!.

B. Mixed case

For a51/2 the classical motion is largely ergodic@24#.
However, there are elliptic islands on tiny scales and th
influence the classical dynamics and the correlations. As t
are too small to support quantum states for the value
Planck’s constant we consider, they do not influence so
measures of quantum chaos. For instance, the distributio
nearest-neighbor level spacings is in good agreement

FIG. 1. ~a! The distribution of matrix elements for the billiar
with deformation parametera50 ~full line!. The dashed line shows
the corresponding classical distribution function@see Eq.~1!#. The
inset shows the histogram of the nearest-neighbor level spac
The Poisson distribution is shown as a dashed line.~b! Same but for
a50.5. The dashed line shows the distribution function
TH

21*0
THdtA(pt ,qt). ~c! Wave function exhibiting the localization

properties discussed in the text.
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the Wigner surmiseP(D)5p/2Dexp(2pD2/4), as shown in
the inset of Fig. 1~b!. However, the rate of exploration o
phase space is highly nonuniform and this effects the dis
bution function of classical averagesTp

21*0
TpdtA(pt ,qt) of

the observable along periodic orbits or classical traject
segments of lengthTp . In Ref. @16# it was argued that the
distribution of quantum-mechanical matrix elements refle
the classical distribution function withTp.TH . Figure 1~b!
shows that this is indeed the case. Both distributions exh
a characteristic shoulder due to the presence of several f
lies of whispering gallery orbits which strongly influence t
phase flow. They are all unstable but their Lyapunov ex
nents increase only logarithmically with the numbern of
bounces at the perimeter,ln;a1blnn. These families cre-
ate comparatively stable regions of phase space where tr
tories tend to be trapped, thus contributing to the tails of
classical distribution function. The quantum distributio
functions reflect this classical localization. In particula
wave functions corresponding to matrix elements in
shoulder of the distribution are localized in the vicinity of th
boundary@compare Fig. 1~c!#.

III. THE HYDROGEN ATOM
IN A STRONG MAGNETIC FIELD

The second example is the hydrogen atom in a str
magnetic field. As usual, we exploit the scaling relations
the system and the mapping onto an anharmonic oscillato
semiparabolic coordinates@23#. The Hamilton function then
becomes in atomic units

H5
pm

2 1pn
2

2
2E~m21n2!1

g2

8
~m2n41m4n2!52, ~3!

whereg is the strength of the magnetic field. Rewriting E
~3! in terms of scaled coordinatesm̃5g1/3m and ñ5g1/3n it
can be shown that the classical Hamiltonian depends onl
a combination of energy and field, namely,e5Eg22/3. To
facilitate the comparison with classical mechanics, we fixe
and solve the Schro¨dinger equation forz5g21/3. The classi-

cal action scales linearly withz, S5*pdq5zS̃. In scaled
units the Heisenberg time is 2p/D(z).

At the scaled energy of«520.2 the classical dynamics i
dominated by a large island in phase space. The isl
around the stable periodic orbit~PO! perpendicular to the
magnetic field occupies about 10% of phase space. In
2~b! we show matrix elements of both positive and negat

z parity for the scaled observableÃ51/2r̃ 5z2/2r . One can
clearly distinguish two types of matrix elements,regular and
irregular ones. The irregular matrix elements are scatte
around the classical phase-space average of the ergodic
ponent, while the regular matrix elements are arranged
strings. This arrangement is shown in detail in Fig. 2~c!, as a
function of zn

21 . Finally, in Fig. 2~a! the corresponding dis
tribution function is shown. The contributions from regul
and irregular matrix elements are again clearly distinct a
we discuss them separately.
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A. Regular matrix elements

The chains of eigenvalues in Fig. 2~b! are associated with
the elliptic island. The matrix elements can be calcula
semiclassically by identifying approximate action and an
variables for the island. Following the method outlined
Ref. @14#, we have determined scaled action variab

( Ĩ 1 , Ĩ 2). Specifically, we introduce a local coordinate syste

near the stable PO and define the actionĨ 2 corresponding to
radial motion in the plane perpendicular to the magne

field. Ĩ 1 is chosen corresponding to vibrational motion pa

allel to the field. For motion along the PO,Ĩ 150 and Ĩ 2

5S̃p . In general, (Ĩ 1 , Ĩ 2) are determined numerically. To

this end, we consider the Legendre transformJ̃(a)5 Ĩ 2

1a Ĩ 1, where J̃ denotes the mean action accumulated
tween two subsequent intersections with the surface
section ~SOS! and a denotes the winding number of th

torus. Again, motion along the PO hasJ̃5S̃p . For rational
a5r /s (r , s integer!, an orbit closes upon itself afters in-
tersections of the SOS andr turns around the central fixe
point. Using 50 approximately periodic trajectoriess

<10 000) covering the elliptic island, we obtainJ̃(a) as

shown in the inset of Fig. 3~a!. Both branches ofJ̃(a) are
fitted using splines~full line!. This allows for an accurate

calculation ofĨ 15dJ̃/da and Ĩ 25g( Ĩ 1)5 J̃2a Ĩ 1 shown in
Fig. 3~a! as a full line. The dashed curve shows the result
harmonic approximation of the motion perpendicular to t

stable PO,Ĩ 25S̃p2apĨ 1. Both curves lie close to each othe
which explains the success of the quantization scheme
Gutzwiller and Miller @26,27#.

The relationĨ 25g( Ĩ 1) can be checked quantum mechan
cally by assigning quantum numbersn5(n1 ,n2) to the regu-

FIG. 2. ~a! The distribution of matrix elementsÃnn ~solid line!,
the corresponding classical distribution for 2p/D(z).350 ~dashed
line!, and the result according to Eq.~1! ~heavy line!. The inset
shows a magnification of the regular contributions.~b! Scaled ma-
trix elementsÃnn5z2^cnu1/2r ucn& versus quantum eigenvalueszn .
~c! Regular matrix elements and the semiclassical theory~dashed
lines!. In all cases, scaled units are used.
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PRE 59 5275PHASE SPACE LOCALIZATION AND MATRIX ELEMENT . . .
lar levels associated with the elliptic island. This is mo
easily done by inspection of the respective matrix eleme

Ãn which fall along lines with fixed quantum numbern1 @cf.
Fig. 2~c! with n150,1,2 . . . from top to bottom#. In order to
determinen2, it is sufficient to count the excitations alon
the PO for one wave function belonging to a particular s
groupn15const@28#.

Making use of the scaling properties, the Einste
Brillouin-Keller ~EBK! quantization conditions may be re

written asĨ5(n1 l)/zn , where (l 2 ,l 1)5(3/2,1/2) denote the
Maslov indices of motion parallel and perpendicular to t
PO andzn are the exact quantum eigenvalues to which
quantum numbers have been assigned@29#. Figure 3~b!
shows the quantized values for (I 2 ,I 1) obtained in this way.
They agree very well with the classical curve. The contin
ation of the quantum curve beyond the classical border in
cates the presence of classical partial barriers such as c
of tiny regular islands near the regular-chaotic surface@14#, a
point which will be further investigated in connection wi
the irregular matrix elements below.

By averaging the observableÃ over the quantizing tori,
we obtain semiclassical approximations for individual mat
elements between states associated with the elliptic isl

The resulting functionÃ0( Ĩ ) is shown in Fig. 3~c! as a func-

tion of Ĩ 1. We have Ã0( Ĩ )→ÃPO as Ĩ 1→0. A quantum
equivalent of Fig. 3~c! is constructed by plotting the exac

matrix elements as a function ofĨ 15(n111/2)/zn1 ,n2
@Fig.

3~d!#. Again, the agreement between the quantum and c
sical curves is very good. For states with small longitudi
quantum numbern2, however, the deviation between exa
and semiclassical matrix elements is clearly visible.

FIG. 3. The relationĨ 25g( Ĩ 1) between the actions (Ĩ 1 , Ĩ 2),
belonging to the regular island, as obtained from classical~a! and
quantum~b! calculations. The dashed line corresponds to the h

monic approximationĨ 25S̃p2apĨ 1. The inset of~a! shows the

Legendre transformJ̃(a)5 Ĩ 21a Ĩ 1 of the classical curveĨ 2

5g( Ĩ 1). ~c! The average of the classical phase space observ

Ã5z2/2r over a given torus as a function of its actionĨ 1. ~d! The
quantum analog shows the exact matrix elementsAn as a function
of the action of the quantizing tori. The dashed line shows the

Ã0( Ĩ )5ÃPO2 Ĩ 1. In all cases, scaled units are used.
t
ts
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-

e

-
i-
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s-
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The matrix elements and their semiclassical approxim
tions are shown in Fig. 2~c!. We observe very good agree

ment. The matrix elements tend toÃPO linearly in 1/z;\
with the gradient given approximately byn111/2. In fact,

for high energies or smallĨ 1 we find Ã0( Ĩ 1).ÃPO2 Ĩ 1 for

Ã51/2r̃ . Together with Ĩ 15(n111/2)/z, we obtain Ãn

.ÃPO2(n111/2)/zn as observed.
It should be noted that Gutzwiller’s theory merely pr

dicts thatAn approachesAPO as\ goes to zero. The approac
to the limit, as shown and described in Fig. 2~c!, cannot be
obtained using Gutzwiller’s formula.

Having calculated the regular matrix elements, their d
tribution function is obtained as follows. To very good acc

racy, Ĩ 2[g( Ĩ 1)5S̃p1apĨ 1 whereS̃p andap are the scaled
action and winding number associated with the PO in
center of the island. This enables us to evaluate the distr

tion function of regular matrix elements asP(Ã)

5N@]Ã0( Ĩ )/] Ĩ 1#21. The normalizationN is determined
from the fraction of regular phase-space volume. This dis
bution function is shown in Fig. 2~a! @see also inset of Fig
2~a!# and agrees well with the quantum-mechanical data
cept in the vicinity of the border of the island.

B. Irregular matrix elements

The procedure described in the preceeding section all
us to identify and remove the regular matrix elements. W
remains is the bulk contribution centered around the mic
canonical averagêA&mc.0.349. This is shown in Fig. 2~a!,
where we have also plotted the distribution of the avera

of Ã along classical trajectory segments of length@30# of the
Heisenberg time 2p/D(z). As in the case of the billiard, the
quantum distribution reflects classical localization in pha
space in the same way as the classical distribution does.
is particularly noticeable in the tails of the distribution
which show significant deviations from a Gaussian shape

In order to connect matrix elements and classical ph
space structures more quantitatively we project out the st
and the trajectories that contribute to certain parts of
quantum and classical distributions, respectively. This is
particular interest in the tails of the distribution, where d
viations from Gaussian behavior are strongest. Figure 4 c
tains a sequence of Poincare´ SOS plots. The left panel show
the SOS crossings of all classical trajectory segments
contribute to a specific interval in the observable and
right panel shows typical Husimi distributions of the corr
sponding quantum states.

The first row in Fig. 4 shows the contributions to th

interval 0.45<Ã<0.5, in the middle between the island an
the chaotic sea. Evidently, all the classical trajectory s
ments stay close to the vicinity of the island and also
quantum wave functions are localized nearby. Thus the st
ing of the classical trajectories near the islands manife
itself in the distribution of average observables and in
quantum wave functions.

If we collect all trajectories with 0.2<Ã<0.25 (Ãp50.2
for the PO parallel to the magnetic field!, their intersections
with the SOS appear near the fixed points of the adiabatic
stable PO parallel to the magnetic field and the other
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winding around it, as well as near the invariant manifolds
the corresponding fixed points. We also show the Hus
distribution of a corresponding eigenstate, which sho
similar localization near the adiabatically stable periodic
bit ~Fig. 4, second row!.

The third row in Fig. 4 shows the situation for 0.33<Ã
<0.37, i.e., in the vicinity of the microcanonical mea
Clearly, the maximum of the irregular distribution~s! is asso-
ciated with the body of the chaotic phase space, where
less unstable subregions are left out.

Of these findings the ones for the adiabatically stable
riodic orbit are particularly interesting since they are not co
nected to a stable island where the long-time organiza
due to self-similar structures in phase space is at least q
tatively understood. The effect of the adiabatically stable
bit is to introduce a new time scale in the dynamics co

FIG. 4. Plot of the intersection points of classical trajector

~accumulated scaled actionS̃.200) with the SOS~left panel! and
Husimi distributions of selected eigenstates~right panel!. The tra-
jectories and eigenstates are chosen such that their mean value
matrix elements lie in between certain intervals, namely (0.45,0
~first row!, (0.2,0.25) ~second row!, and (0.33,0.37)~third row!.
For the coordinates on the SOS see@25#.
s
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f
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s
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he
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bined with a direction of motion with weak instability. Sinc
the comparison between classical and quantum mechani
based on finite time segments, long time trapping in o
region implies that there is less time to explore others a
hence a certain lack of ergodicity. For infinite times th
deficit will disappear, but for finite times the deviations r
main noticeable, and, as Heller has argued, also persist q
tum mechanically@31#.

IV. CONCLUSIONS

In summary, we have established a close quantu
classical correspondence for distributions of diagonal ma
elements in quantum systems with mixed classical ph
space. We have related quantum and classical localiza
properties and have thus shown how deviations fr
random-matrix theory in such systems can be underst
qualitatively and, to a certain extent, also quantitative
There remains then the question of the relation between
results and the phenomenon of scars. According to@21# a
wave function shows a scar in some region if the quant
probability ucu2 is enhanced over the average expected fr
a uniform microcanonical distribution, perhaps due to
quantum interference effect, similar to weak localization.
the present case, however, the enhancement is purely cl
cal in origin, due to an increased classical trapping time
the localization region~as suggested previously in@10#!.
Clearly, this phenomenon shows up for finite time segme
only and vanishes in the classical limit~where TH→`), a
feature it shares with scars in general. Since typical syst
have a nonuniform phase space the phenomenon discu
here should be rather widespread and a major source o
viations from random-matrix behavior in matrix elemen
However, such an enhancement should be clearly dis
guished from scarring due to quantum effects like weak
calization. In fact, it is not clear whether scarring witho
corresponding classical enhancement exists. It would
highly desirable to have a clear-cut example demonstra
this latter type of scarring as opposed to the phenome
discussed in the present letter.
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